Differential chromatin profiles partially determine transcription factor binding
نویسندگان
چکیده
We characterize how genomic variants that alter chromatin accessibility influence regulatory factor binding with a new method called DeltaBind that predicts condition specific factor binding more accurately than other methods based on DNase-seq data. Using DeltaBind and DNase-seq experiments we predicted the differential binding of 18 factors in K562 and GM12878 cells with an average precision of 28% at 10% recall, with the prediction of individual factors ranging from 5% to 65% precision. We further found that genome variants that alter chromatin accessibility are not necessarily predictive of altering proximal factor binding. Taken together these findings suggest that DNase-seq or ATAC-seq Quantitative Trait Loci (dsQTLs), while important, must be considered in a broader context to establish causality for phenotypic changes.
منابع مشابه
Accurate Prediction of Inducible Transcription Factor Binding Intensities In Vivo
DNA sequence and local chromatin landscape act jointly to determine transcription factor (TF) binding intensity profiles. To disentangle these influences, we developed an experimental approach, called protein/DNA binding followed by high-throughput sequencing (PB-seq), that allows the binding energy landscape to be characterized genome-wide in the absence of chromatin. We applied our methods to...
متن کاملA graphical model approach visualizes regulatory relationships between genome-wide transcription factor binding profiles
Integrated analysis of multiple genome-wide transcription factor (TF)-binding profiles will be vital to advance our understanding of the global impact of TF binding. However, existing methods for measuring similarity in large numbers of chromatin immunoprecipitation assays with sequencing (ChIP-seq), such as correlation, mutual information or enrichment analysis, are limited in their ability to...
متن کاملHigh-throughput chromatin information enables accurate tissue-specific prediction of transcription factor binding sites
In silico prediction of transcription factor binding sites (TFBSs) is central to the task of gene regulatory network elucidation. Genomic DNA sequence information provides a basis for these predictions, due to the sequence specificity of TF-binding events. However, DNA sequence alone is an impoverished source of information for the task of TFBS prediction in eukaryotes, as additional factors, s...
متن کاملFoxA1 Translates Epigenetic Signatures into Enhancer-Driven Lineage-Specific Transcription
Complex organisms require tissue-specific transcriptional programs, yet little is known about how these are established. The transcription factor FoxA1 is thought to contribute to gene regulation through its ability to act as a pioneer factor binding to nucleosomal DNA. Through genome-wide positional analyses, we demonstrate that FoxA1 cell type-specific functions rely primarily on differential...
متن کاملShared transcription factors contribute to distinct cell fates
Genome-wide transcription factor (TF) binding profiles differ dramatically between cell types. However, not much is known about the relationship between cell-type-specific binding patterns and gene expression. A recent study demonstrated how the same TFs can have functional roles when binding to largely non-overlapping genomic regions in hematopoietic progenitor and mast cells. Cell-type specif...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 12 شماره
صفحات -
تاریخ انتشار 2017